Cuadratura Gaussiana.

Los métodos de integración vistos hasta ahora parten de integrar polinomios interpolantes de Lagrange de diferentes grados, es decir:

$$\int_{a}^{b} y dx \approx \int_{a}^{b} \sum_{i=0}^{n} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{(x - x_{j})}{(x_{i} - x_{j})} y_{i} dx = \sum_{i=0}^{n} y_{i} \int_{a}^{b} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{(x - x_{j})}{(x_{i} - x_{j})} dx$$

O bien:

$$\int_{a}^{b} y dx \approx \sum_{i=0}^{n} y_{i} w_{i} = \sum_{i=0}^{n} f(x_{i}) w_{i}$$

$$\int_{a}^{b} y dx = \int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} f(x_{i}) w_{i}$$

Como aproximamos f(x) por un polinomio, la integral de un polinomio también es un polinomio, y un polinomio puede escribirse como una combinación lineal de un conjunto de funciones ortogonales, es decir, si $\{\phi_0, \phi_I, ... \phi_n\}$ es un conjunto de funciones ortogonales:

$$P_n(x) = \sum_{i=0}^n a_i \phi_i$$

Por ejemplo, un conjunto base $\{\phi_i\} = \{x^n\}$.

Un método de cuadratura consiste en aproximar la integral definida de una función. La **cuadratura de Gauss**, es una cuadratura que selecciona los puntos de evaluación de manera óptima y no en una forma igualmente espaciada, construida para dar el resultado de un polinomio de grado 2n-1 o menos, elegibles para los puntos x_i y los coeficientes w_i para i = 0,...,n.

Gauss toma como conjunto ortogonal a los polinomios de Legendre que son ortogonales en el intervalo [-1, 1], y están dados por:

$$L_n(t) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (t^2 - 1)^n$$

O en forma recursiva:

$$L_{k+1}(t) = \frac{(2k+1)tL_k(t) - kL_{k-1}(t)}{k+1}$$

Con $L_0(t) = 1$ y $L_1(t) = t$.

Haciendo k = 1, para obtener $L_2(t)$ tenemos:

$$L_{k+1}(t) = L_2(t) = \frac{(2(1)+1)tL_1(t) - (1)L_0(t)}{(1)+1} = \frac{(3t^2 - 1)}{2}$$

Su propiedad de ortogonalidad es:

$$\int_{-1}^{1} L_m(t) L_n(t) dt = \frac{2}{2n+1} \delta_{mn}$$

Por lo tanto, el dominio de tal cuadratura es de [-1, 1].

Tal cuadratura dará resultados precisos sólo si es aproximada por un polinomio dentro del rango [-1, 1]. Si la función puede ser escrita como donde es un polinomio aproximado y es conocido.

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} W(t)g(t)dt \approx \sum_{i=0}^{n} g(t_i)w_i$$

Debido a ello hay que hacer un cambio de variable, encontrémosla ecuación de la recta que pasa por (1, b) y (-1, a):

$$x - a = \frac{b - a}{1 - (-1)}(t - (-1))$$

Reduciendo:

$$x = \frac{b-a}{2}(t+1) + a$$

Y su derivada es:

$$\frac{dx}{dt} = \frac{b-a}{2}$$

Entonces:

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} f(t)dt = \int_{-1}^{1} f(x(t)) \frac{dx}{dt} dt = \int_{-1}^{1} f\left(\frac{b-a}{2}(t+1) + a\right) \left(\frac{b-a}{2}\right) dt$$

Por lo tanto:

$$\int_{a}^{b} f(x)dx = \left(\frac{b-a}{2}\right) \int_{-1}^{1} f\left(\frac{b-a}{2}(t+1) + a\right) dt$$

Y

$$\int_{a}^{b} f(x)dx = \left(\frac{b-a}{2}\right) \int_{-1}^{1} f\left(\frac{b-a}{2}(t+1) + a\right) dt = \left(\frac{b-a}{2}\right) \sum_{i=0}^{n} w_{i} f(x(t_{i}))$$

Donde las t_i son las raíces del polinomio de Legendre, por ejemplo para el polinomio $L_2(t)$, tenemos:

$$t_1 = \frac{1}{\sqrt{3}}; \quad t_2 = \frac{1}{-\sqrt{3}}$$

y los pesos w_i están dados por la expresión:

$$w_{i} = \frac{2}{\left(1 - t_{i}^{2}\right)\left[L_{n}(t_{i})\right]^{2}}$$

Encontremos los pesos para las dos raíces del polinomio $L_2(t)$:

$$w_1 = \frac{2}{\left(1 - t_1^2\right) \left[L_2(t_1)\right]^2} = \frac{2}{\left(1 - \frac{1}{3}\right) \left[\frac{1}{2}\left(6\frac{1}{\sqrt{3}}\right)\right]^2} = 1$$

Igual para la raíz t_2 , tenemos $w_2 = 1$.

A continuación se muestra una tabla con las raíces y los pesos para los polinomio de Legendre de grado 0,...,7.

Tabla de pesos y raíces para los polinomios de Legendre $L_n(t)$ con n = 0,...,7

	Tabla de pesos y faices para los polifionnos de Legendre $L_n(t)$ con $n=0,,t$.				
n	$L_n(t)$	t_i			
0	1	No existe	No existe		
1	t	0	No existe		
2	$\frac{1}{2}(3t^2-1)$	$\pm \frac{1}{\sqrt{3}}$	$w_1 = w_2 = 1$		
3	$\frac{1}{2}(5t^3-3t)$	0, ± 0.774596669241	0.88888888889 0.55555555556		
4	$\frac{1}{8} \left(35t^4 - 30t^2 + 3 \right)$	± 0.339981043584 ± 0.861136311594	0.652145154863 0.347854845137		
5	$\frac{1}{8} \left(63t^5 - 70t^3 + 15t \right)$	0 ± 0.538469310106 ± 0.906179845939	0.56888888889 0.478628670499 0.236926885056		
6	$\frac{1}{16} \left(231t^6 - 315t^4 + 105t^2 - 5 \right)$	± 0.238619186083 ± 0.661209386466 ± 0.932469514203	0.467913934573 0.360761573048 0.171324492379		
7	$\frac{1}{16} \left(429t^7 - 693t^5 + 355t^3 - 35t \right)$	0 ± 0.405845151377 ± 0.741531185599 ± 0.949107912343	0.417959183673 0.381830050505 0.279705391489 0.129484966169		

Nota que no existe w_0 , por lo que nuestra integral será calculada con:

$$\int_{a}^{b} f(x)dx = \left(\frac{b-a}{2}\right) \sum_{i=1}^{n} w_{i} f(x(t_{i}))$$

Donde el contador *i* empieza en 1.

Ventajas y desventajas

La cuadratura Gaussiana brinda mayor precisión que los métodos de trapecio y Simpson, pero en ocasiones es necesario utilizar polinomio de mayor grado para alcanzarla.

No se puede aplicar a datos discretos. Se requiere conocer las raíces y los pesos para los polinomios interpolantes de Lagrange. Usar un polinomio de mayor grado, no garantiza mejor precisión. No es posible estimar el error sin conocer el resultado exacto.

Ejemplo.

Usando cuadratura Gaussiana evalúa la siguiente integral:

$$\frac{1}{\sqrt{2\pi}} \int_{1}^{1.5} e^{\frac{-x^2}{2}} dx$$

Solución:

Usando la siguiente expresión con n = 2.

$$\int_{a}^{b} f(x)dx = \left(\frac{b-a}{2}\right) \sum_{i=1}^{n} w_{i} f(x(t_{i}))$$

Con

$$x(t) = \frac{b-a}{2}(t+1) + a$$

Tenemos:

$$\int_{1}^{1.5} f(x)dx = \left(\frac{1.5 - 1}{2}\right) \left(w_{1}f(x(t_{1})) + w_{2}f(x(t_{2}))\right)$$

Como vimos $w_1 = w_2 = 1$ y $t_i = \pm \frac{1}{\sqrt{3}}$, entonces:

$$\frac{1}{\sqrt{2\pi}} \int_{1}^{1.5} e^{\frac{-x^{2}}{2}} dx = \frac{1}{\sqrt{2\pi}} \frac{b-a}{2} \left(e^{\frac{-\left(\frac{b-a}{2}(t_{1}+1)+a\right)^{2}}{2}} + e^{\frac{-\left(\frac{b-a}{2}(t_{2}+1)+a\right)^{2}}{2}} \right) =$$

Como los pesos son iguales a 1, sólo sustituyendo las raíces:

$$\frac{1}{\sqrt{2\pi}} \int_{1}^{1.5} e^{\frac{-x^{2}}{2}} dx = \frac{1}{\sqrt{2\pi}} \frac{1}{4} \left(e^{\frac{-\left(\frac{1}{4}\left(\frac{1}{\sqrt{3}}+1\right)+1\right)^{2}}{2}} + e^{\frac{-\left(\frac{1}{4}\left(-\frac{1}{\sqrt{3}}+1\right)+1\right)^{2}}{2}} \right) =$$

Evaluando:

$$\frac{1}{\sqrt{2\pi}} \int_{1}^{1.5} e^{\frac{-x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \frac{1}{4} \left(e^{\frac{-(1.39433757)^2}{2}} + e^{\frac{-(1.10566243)^2}{2}} \right) = \frac{1}{\sqrt{2\pi}} \left(\frac{0.3782921 + 0.54267498}{4} \right)$$

Reduciendo:

$$\frac{1}{\sqrt{2\pi}} \int_{1}^{1.5} e^{\frac{-x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \left(0.23024177 \right) = 0.09185318$$

Comparando con el resultado exacto¹ a cuatro decimales.

$$\frac{1}{\sqrt{2\pi}} \int_{1}^{1.5} e^{\frac{-x^2}{2}} dx = 0.0919$$

El error absoluto es:

$$\epsilon = |0.0919 - 0.09185318| = 0.00046823$$

¹Valor tomado de la tabla de distribución normal estándar.

Ejemplo.

Usando cuadratura Gaussiana evalúa la siguiente integral:

$$\frac{1}{\sqrt{2\pi}} \int_0^{\pi} \sin(x) dx$$

Solución:

Usando la siguiente expresión con n = 2.

$$\int_{a}^{b} f(x)dx = \left(\frac{b-a}{2}\right) \sum_{i=1}^{n} w_{i} f(x(t_{i}))$$

Con

$$x(t) = \frac{b-a}{2}(t+1) + a$$

Tenemos:

$$\int_0^{\pi} sen(x)dx = \left(\frac{\pi - 0}{2}\right) \left(w_1 f\left(x\left(\frac{1}{\sqrt{3}}\right)\right) + w_2 f\left(x\left(\frac{1}{-\sqrt{3}}\right)\right)\right)$$

Construyamos la siguiente tabla:

t_i	w_i	x(t)	f(x(t))	wf(x(t))
0.577350269	1	2.44489292	0.641690003	0.64169000
-0.57735027	1	0.65510708	0.609244162	0.60924416
			Suma=	1.25093416
			Integral=	1.93894795

Para n = 2, tenemos:

$$\int_{0}^{\pi} sen(x)dx = 1.93894795$$

Ahora tomemos n = 4 y construyamos una tabla:

t_i	w_i	x(t)	f(x(t))	wf(x(t))
-0.86113	0.34785	0.2152485	0.2135902	0.07429735
-0.33998	0.65214	1.023031	0.853690428	0.55672568
0.33998	0.65214	2.076969	0.874606525	0.57036590
0.86113	0.34785	2.8847515	0.254026597	0.08836315
			Suma=	1.28975208
			Integral=	1.99911572

Para n = 4, tenemos:

$$\int_{0}^{\pi} sen(x)dx = 1.99911572$$

Ahora tomemos n = 5 y construyamos una tabla:

t_i	w_i	x(t)	f(x(t))	wf(x(t))
-0.90617	0.23692	0.1454365	0.144924335	0.03433547
-0.53846	0.47862	0.715387	0.655909589	0.31393145
0	0.56888	1.55	0.999783764	0.56875699
0.53846	0.47862	2.384613	0.68672905	0.32868226
0.90617	0.23692	2.9545635	0.185940682	0.04405307
			Suma=	1.28975923
			Integral=	1.99912681

Para n = 5, tenemos:

$$\int_{0}^{\pi} sen(x)dx = 1.99912681$$

Sabemos que el resultado exacto es 2, por lo que para n=4 y 5, tiene un error menor.

Conclusión.

La cuadratura Gaussiana brinda mejor precisión que los métodos vistos anteriormente, pero su aplicación está limitada a funciones analíticas.

No podemos estimar el error.

Es un método fácil de programar.