

DIVISIÓN DE CIENCIAS BÁSICAS COORD. DE CIENCIAS APLICADAS

SECCIÓN ACADÉMICA DE MATEMÁTICAS APLICADAS

MATEMÁTICAS AVANZADAS

PRIMER EXAMEN FINAL 7 DE DICIEMBRE DE 2017

ESTUDIANTE:	SEMESTRE: 2018-1
NÚMERO DE CUENTA: _ _ _ - CLAVE:1424	FIRMA
IDENTIFICACIÓN: CREDENCIAL DE LA FI 🔲 IN E 🖵	
INSTRUCCIONES: Este examen consta de seis reactivos, con una duración máxima de 2.0 horas. Se deberá entregar el cuestionario	

Las calificaciones de la evaluación las puedes consultar Lunes 15 de enero de 2018, 12:00 h https://www.dgae-siae.unam.mx/www_gate.php

	Dada la función $f(z) = z^*$, donde z es la variable compleja $x + yi$,				
1.	Calcule la integral de línea de f(x) a lo largo del segmento de parábola $x = y^2$, del punto $z = 4 + 2i$				
	10 PUNTOS				
	Determine el valor de la integral $ \oint_C \frac{e^{2z}}{z(z+\pi i)^2} dz $, sobre la circunferencia C: $ z+\pi i = 4$, recorrida				
2.	en sentido antihorario.				
	20 PUNTOS				

Continúa ...

3.	Desarrolle en una serie de Laurent alrededor del punto $z_0 = i$, a la función: $f(z) = \frac{2}{(z-i)^2(z-1)}$	
	(2-1) (2-1)	10 PUNTOS
4.	Obtenga un desarrollo en serie de Fourier de la función $f(x) \ = \ \begin{cases} -1, & \text{si} -2 < x < 0 \\ 1, & \text{si} 0 < x < 2 \end{cases},$	
	con período p = 4, y muestre: a) Los 4 primeros términos no nulos de la serie; así como los coeficientes de Fourie. b) Los valores de convergencia de la serie para x = 0 y x = 1	20 PUNTOS
5.	Encuentre la transformada inversa de Fourier de la función $F(\omega) = \frac{3e^{(\omega-2)i}}{3-(2-\omega)i} \ .$	
		20 PUNTOS
6.	A partir de la definición determinar la transformada de Fourier de la función $f(x)=e^{-2\pi x^2}, \text{para} -\infty < x < \infty$	20 PUNTOS

FORMULARIO

$\Re \left\{ e^{-a x } \right\} = \frac{2a}{a^2 + \omega^2}, a > 0$	$\mathfrak{F}\left\{ f^{(n)}(x) \right\} = (i\omega)^n F(\omega)$
$\Im \{ H(x) e^{-ax} \} = \frac{1}{a + i\omega}, a > 0$	$\mathfrak{F}\left\{ f(x-x_{0})\right\} =e^{-ix_{0}\omega} F(\omega)$
$\Re \{ H (x + a) - H (x - a) \} = \frac{2}{ω} sen(aω)$	$\mathcal{F} \left\{ e^{i\omega_0 x} f(x) \right\} = F(\omega - \omega_0)$