

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS PRIMER EXAMEN FINAL ÁLGEBRA LINEAL

2 DE JUNIO DE 2017

SEMESTRE 2017 - 2

TIPO B

Instrucciones: Leer cuidadosamente el enunciado de cada uno de los **6** reactivos de que consta el examen antes de comenzar a resolverlos. La duración del examen es de 2.0 horas.

1. Sea el conjunto:

$$D = \left\{ \begin{bmatrix} a & b \\ 2a & ab \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}.$$

Determinar si D es un subespacio del espacio vectorial de las matrices cuadradas de orden dos sobre el campo de los números reales.

- **2.** Sean $A = \{(1, -i), (0, -i)\}$ y $B = \{\overline{b_1}, \overline{b_2}\}$ bases de \mathbb{C}^2 sobre \mathbb{C} . Si $M_B^A = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ es la matriz de transición de la base A a la base B y $(\overline{x})_B = \begin{bmatrix} 5 \\ -10 \end{bmatrix}$, determinar:
- a) Los vectores de la base B.
- b) El vector \overline{x} .
- **3.** Dada la transformación lineal $S: \mathbb{R}^2 \to P_3$, donde $P_3 = \left\{ax^3 + bx^2 + cx + d \mid a,b,c,d \in \mathbb{R}\right\}$ y la transformación definida por $S(a,b) = (a-b)x^3 + (a+b)x^2 + bx + a$.

Obtener:

- a) El núcleo de la transformación S.
- b) La dimensión del recorrido de S.

4. Sea el operador lineal $S: \mathbb{R}^2 \to \mathbb{R}^2$ y sean $\overline{v}_1 = \begin{pmatrix} -2,1 \end{pmatrix}$ y $\overline{v}_2 = \begin{pmatrix} 1,0 \end{pmatrix}$ vectores característicos del operador S, asociados a los valores característicos $\lambda_1 = -1$ y $\lambda_2 = 1$, respectivamente.

Determinar:

- a) La imagen del vector $\overline{w} = 2(-2,1) + (1,0)$.
- b) Si el operador S es diagonalizable.
- **5**. Sean $W = \{(x, y, x) | x, y \in \mathbb{R}\}$ un subespacio de \mathbb{R}^3 y el producto interno usual en \mathbb{R}^3 .

Determinar:

- a) El complemento ortogonal de \it{W} .
- b) La proyección del vector $\overline{v} = (3, 2, 1)$ sobre W.

6. Dados el espacio vectorial \mathbb{R}^2 con el producto interno usual, el operador lineal simétrico $S:\mathbb{R}^2 \to \mathbb{R}^2$ y los vectores característicos $\overline{v}_1 = (1,-2)$ y $\overline{v}_2 = (2,1)$ asociados a los valores característicos $\lambda_1 = 6$ y $\lambda_2 = 1$, respectivamente, determinar la regla de correspondencia de T utilizando la descomposición espectral del operador S.