

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS DEPARTAMENTO DE ÁLGEBRA LINEAL PRIMER EXAMEN FINAL (1220)

5 DE DICIEMBRE DE 2023

NOMBRE DEL ALUMNO:	Tipo	Α
NUMERO DE CUENTA:	SEMESTRE 2	4-1

Instrucciones: Lee cuidadosamente los enunciados de los 6 reactivos que componen el examen antes de empezar a resolverlos. La duración máxima del examen es de 2 horas. Para la realización del examen no se permitirá el empleo de dispositivos electrónicos ni de formulario.

1. Sea el conjunto $S = \{x | x \in Q; x \neq -1\}$ y la operación binaria * definida como:

$$x * y = x + y + xy \quad \forall \ x, y \in S$$

Si se sabe que (s,*) es un grupo abeliano, utilizar sus propiedades para obtener el valor de a que satisface la ecuación:

$$a * \frac{7}{4} = \frac{1}{5} * \frac{7}{4} * \frac{3}{2}$$

16 puntos.

2. Sea $A = \{x + 3, 2x - 1\}$ y $B = \{8x + 3, 5x + 1\}$ dos bases del espacio vectorial de polinomios de grado menor o igual a uno con coeficientes reales.

Determinar:

- a) La matriz de transición de la base B a la base A.
- b) Las coordenadas del vector (3x + 2) en la base A, si se sabe que $(3x + 2)_B = (1 1)$

16	puntos.
-----------	---------

TIPO A

3. Sean los espacios vectoriales $M = \{(a \ b \ c \ d) | a, b, c, d \in R\}$, $N = \{(x \ y \ y \ z) | x, y, z \in R\}$ y la transformación lineal $T: M \to N$ definida por:

$$T = (a b c d) = (a - b d - c d - c 2a + b + c)$$

Determinar:

- a) El núcleo de la transformación T.
- b) La dimensión del recorrido de T.
- c) Si existe la transformación inversa T^{-1} y, en caso afirmativo, obtener su regla de correspondencia.

18 puntos

4. Sean los operadores lineales $T: \mathbb{R}^2 \to \mathbb{R}^2$ y $S: \mathbb{R}^2 \to \mathbb{R}^2$, definidos por:

$$T(x,y) = (2x, x - y)S(x,y) = (x + 2y, 0)$$

Determinar si la transformación $H = S \circ T + 2I$, donde I es la transformación identidad de R^2 , es diagonalizable y, en caso de serlo, obtener una matriz diagonal D asociada a H.

18 puntos

5. Sea el espacio vectorial R^3 con producto interno usual y $W = \{(z, -z, z) | z \in R\}$ un subespacio de R^3 .

Determinar:

- a) El complemento ortogonal W^{\perp} y una de sus bases.
- b) El vector $a \in W$ más cercano a v = (1,1,0)

16 puntos

6. Sea el espacio vectorial R^3 con producto interno usual y el operador lineal $T: R^2 \to R^2$ cuya regla de correspondencia es:

$$T(x,y) = (-5x + 5y, 5x - 5y)$$

a) Demostrar que T es un operador simétrico.

- b) Determinar los espacios característicos de T.
- c) Obtener la descomposición espectral de T.

18 puntos