

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS DEPARTAMENTO DE ÁLGEBRA LINEAL SEGUNDO EXAMEN FINAL 11 DE DICIEMBRE DE 2023

NOMBRE DEL ALUMNO:NUMERO DE CUENTA:	SEMESTRE 24-1
Instrucciones: Lee cuidadosamente los enunciados de los 6 reactivos que contente de empezar a resolverlos. La duración máxima del examen es de 2 horas del examen no se permitirá el empleo de dispositivos electrónicos.	s. Para la realización
1. Determinar si el conjunto $A = \{(x,y) y- x =0, \forall x,y \in \mathbb{R}\}$ es un	subespacio de \mathbb{R}^2 .
	16 puntos.
2. Determinar si el conjunto $D = \{sen(x), cos(x + \pi), tan(0)\}$ dependiente o independiente.	ጋ)} es linealmente
	16 puntos.

3. Sea la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ con regla de correspondencia

$$T(x, y, z) = (x + y, y - z, z)$$

Determinar:

- a) La inversa de la transformación T.
- b) El núcleo de T^{-1} .
- c) La dimensión del núcleo de T^{-1}

18 puntos

4. Sea el operador lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ cuya regla de correspondencia es:

$$T(x, y, z) = (-2x + z, -5y, 6x - 3z)$$

Determinar:

- a) Una matriz asociada a T.
- b) Los espacios característicos asociados a cada valor propio de T.
- c) Una matriz diagonal ${\it D}$ asociada al operador ${\it T}$ y la base a la que está referida.

18 puntos

5. Sea $B = \{(1,2,1), (1,-1,1)\}$ una base de un subespacio W de R^3 . Para el producto interno usual en R^3 , obtener el \bar{u} vector que pertenece a W más cercano al vector (4,2,-3)

16 puntos

6. Los valores característicos de un operador $T: R^3 \to R^3$ son $\lambda_{1,2} = 1$ y $\lambda_3 = 7$; los espacios característicos correspondientes son $E(1) = \{(a,b,0) | a,b \in R\}$ y $E(7) = \{(0,0,c) | c \in R\}$. Mediante la descomposición espectral de T, obtener la regla de correspondencia del operador.

16 puntos